Modelling Daily Demand Flows in the Era of Big Data

Francesco Viti

MobiLab Transport Research Group
Faculty of Sciences, Technology and Communication, University of Luxembourg

EWGT2017 - September 6, 2017, Budapest
Big Data: some general stats

- 3 Zetabytes of data in the digital universe in 1 year
- By 2020 1.7 megabites of data created every second for every person on earth
- Over 5 billion people are calling, texting, tweeting and browsing on mobile phones worldwide
- Data production will be 50 times greater in 2020 than it was in 2010

*Zettabyte = $35,000,000,000,000,000,000,000$ bytes

Sources: McKinsey, EMC Corp.
The era of Big (mobility) Data
Big Data fireworks from Waze users
Towards a Smart Mobility vision: connecting everyone & everything

- Exploiting data sharing and connectivity of travellers, vehicles and infrastructure through ICT/IoT enables unprecedented performances
 - Better seamless information
 - Through **Big and Open Data**
 - Through advanced **DSS for the travellers**
 - Better integrated management: C-ITS
 - Through **Cooperative ITS technology**
 - Through advanced **DSS for the managers**
 - Better availability and use of services
 - Through incentivizing **collaborative mobility**
 - By exploiting **multimodal mobility** solutions

https://www.collaborative-team.eu
A (likely) Smart Mobility future

- Mobility-as-a-Service: Shifting from vehicle ownership to vehicle *usership*
 - Sharing Economy
 - Integrated multimodal options
 - Mobility budget schemes
 - Connected & autonomous vehicles
Challenges for the transportation research community

- How to organise Smart Mobility systems in an efficient way?
 - Integration of services, need for new network design approaches
 - Mobility budget schemes, need to quantify willingness to pay and to change
 - New emerging technologies and solutions conceived with unprecedented frequency

- How to predict demand and supply systems in future Smart Mobility systems?
 - Missing historical data, early MaaS systems currently tested
 - Complex interoperability of services, value added effects, transition towards CAVs
 - Changing mobility habits, attitudes, values of times,…

- Are our transport models ready?
 - Will our supply models be the same?
 - Will our demand models be accurate enough?
Modelling Daily Demand Flows

And some ingredients for reliable estimation
Distinguishing regular daily demand patterns

True Demand = regular pattern + structural deviations + random fluctuations
The complexity of daily mobility patterns
The complexity of daily mobility patterns in Luxembourg
The traditional transport modelling approach

- The ‘traditional’ 4-stage model
 - Socio-demographic data
 - Travel surveys
 - Trip-based, busiest peak hour
 - Generally not suited for dynamic demand modeling

- Activity-based models
 - Schedule-based
 - Able to capture complex daily activity chains
 - Hard to calibrate and to get suitable data
 - Difficult to get consistent aggregated demand flows
 - Currently not much used for estimating daily flows
The current state of the practice for calibrating transportation models
Traffic models, data collection and estimation methods

Infrastructure Planning
- Travel demand forecasting (static, quasi-static)
 - 4-step models, activity-based models
 - OD matrix correction / adjustments from traffic data

Dynamic Traffic Management
- Dynamic demand estimation (dynamic, offline)
 - Quasi-dynamic / sequential / simultaneous
 - Simulation DTA-based

Real-time information & management
- Dynamic state flow estimation (dynamic, online)
 - Data-driven
 - Model-driven

Acknowledgment: Guido Cantelmo (UL)
Goal: find most likely demand and supply characteristics that reproduce the data

\[x = \arg \min_x \left[\sum_t \sum_j f_1(x_j, \hat{x}_j) + \sum_t \sum_i f_2(y_i, \hat{y}_i) \right] \]

s.t. \[y_i = \sum_{j \in J_i} A x_j = \sum_{j \in J_i} B(x) P(x) x_j \]

Some (well-known) issues
- Complex dynamics caused by travel behavior
- Traffic models (DNL/DTA) course representation of real traffic propagation
- Highly combinatorial & non-linear problem

Distance btw estimated and prior matrix
Distance btw simulated and observed traffic states

Traffic propagation functions (DNL)
Travel behavior functions (DTA)

x = demand flows
y = traffic flows
The under-determinedness problem

Spatial under-determinedness

Demand AC Traffic Zone A

Traffic Zone B

Demand BC

Observations

Non-linear mapping link-OD flows

Non-unique link-path-OD relations

<table>
<thead>
<tr>
<th>OD</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OD</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>150</td>
</tr>
</tbody>
</table>
A simple example: Antwerp network

- Few route choice options
- Only traffic counts used for calibration
- Wrong structure of the demand matrix

- Spoiler: Better data and better models will solve the issue

Acknowledgments: Rodric Frederix Chris Tampere (KU Leuven)
Some ingredients for reliable dynamic traffic estimation

1. Demand information
 1. Demand data
 2. Demand models
2. Data quality
 1. Sensor locations
 2. Different data types
3. Dynamic traffic flow models
 1. Simulation of traffic flow propagation
 2. Reproduction of congestion dynamics
4. Travel behavior models
 1. Travel choice models
 2. Traffic assignment and equilibrium
5. Optimisation algorithms
 1. Structure of the estimator
 2. Gradient vs. gradient-free methods

Reduce solution search space and information reliability
Reduce the mismatch between model and reality
Helps for orientating in the solution space in the right direction
Current research directions at UL using Big Data

- Big Data-based applications
 - Mobility analysis
 - Demand estimation
 - Multimodal modelling
 - Personal Travel planners
- Real data available of Luxembourg
 - Mobile phone data (Post)
 - Smartphones (& smartwatches) (go2uni platform)
 - Other ‘more traditional’ (OpenData Portail)

http://otp.mamba-project.lu/
Using mobile phone data for daily demand production and spatial-temporal distribution

Acknowledgments: Simone Di Donna & Guido Cantelmo (UL)
Using mobile phone data for network state estimation: Macroscopic Fundamental Diagram

Acknowledgments: Raphael Frank & Thierry Derrmann (SnT)
Using smartphone (and smartwatch) data for modelling individual daily mobility patterns

Acknowledgments: Bogdan Toader, Sebastien Faye (UL)
Using smartphone data for predicting and correlating daily demand patterns

Acknowledgments: Bogdan Toader (UL)
Generating purpose-specific demand information from individual mobility data

Observed activity-travel patterns

Generated demand

Acknowledgments: Ariane Scheffer (UL)
Including activity scheduling in daily demand estimation (1)

Acknowledgments: Guido Cantelmo (UL)
Including activity scheduling in daily demand estimation (2)

Acknowledgments: Guido Cantelmo (UL)
Application on a real sized network: Luxembourg

Data provided by POST Luxembourg
Benchmarking scenario: Demand in/out of Lux City

Demand to Luxembourg

Demand from Luxembourg

Acknowledgments: Guido Cantelmo (UL)
Trip-Based scenario: Classical approach

Utility-based formulation

Results of daily demand flows on some OD pair

Acknowledgments: Guido Cantelmo (UL)
including mobile phone data for demand flow production

Model convergence

Objective function

Iteration

Acknowledgments: Guido Cantelmo (UL)
Future perspectives

- The future is uncertain, but…
- The future is bright: **A lot still has to be done!!!**
- A unified model-data-driven modelling approach needed
 - Travel demand models with dynamic flow estimation models
 - Behavioural and data science approaches
 - Interdisciplinary effort
 - Engineering
 - Computer Science
 - Social sciences
 - Transport Economy
 - …
Outlook and closing remarks

- New Big Data gives opportunities for improving our demand models
 - Understanding mobility needs
 - Forecast future activity-travel patterns
 - Enable users with enhanced information

- Examples of transport applications
 - Dynamic traffic modelling
 - Multimodal travel planning
 - Decision support services
 - Transport systems optimisation

- New challenges needed to model the demand and supply of the future
References

THANK YOU FOR YOUR ATTENTION!

www.mobilab.lu francesco.viti@uni.lu