Modelling Daily Demand Flows in the Era of Big Data

Francesco Viti

MobiLab Transport Research Group

Faculty of Sciences, Technology and Communication, University of Luxembourg

EWGT2017 - September 6, 2017, Budapest

Big Data: some general stats

- 3 Zetabytes of data in the digital universe in 1 year
- By 2020 1.7 megabites of data created every second for every person on earth
- Over 5 billion people are calling, texting, tweeting and browsing on mobile phones worldwide
- Data production will be 50 times greater in 2020 than it was in 2010

***Zettabyte** = 35,000,000,000,000,000,000 bytes

Sources: McKinsey, EMC Corp.

The era of Big (mobility) Data

Big Data fireworks from Waze users

0		
	\mathbf{h}	
\sim		

Police

Hazard

Traffic Jam

May 23, 2011 01:00

Towards a Smart Mobility vision: connecting everyone & everything

- Exploiting data sharing and connectivity of travellers, vehicles and infrastructure through ICT/IoT enables unprecedented performances
 - Better seamless information
 - Through Big and Open Data
 - Through advanced DSS for the travellers
 - Better integrated management: C-ITS
 - Through Cooperative ITS technology
 - Through advanced DSS for the managers
 - Better availability and use of services
 - Through incentivizing collaborative mobility
 - By exploiting **multimodal mobility** solutions

https://www.collaborative-team.eu

A (likely) Smart Mobility future

- Mobility-as-a-Service: Shifting from vehicle ownership to vehicle *usership*
 - Sharing Economy
 - Integrated multimodal options
 - Mobility budget schemes
 - Connected & autonomous vehicles

Challenges for the transportation research community

- How to organise Smart Mobility systems in an efficient way?
 - Integration of services, need for new network design approaches
 - Mobility budget schemes, need to quantify willingness to pay and to change
 - New emerging technologies and solutions conceived with unprecedented frequency
- How to predict demand and supply systems in future Smart Mobility systems?
 - Missing historical data, early MaaS systems currently tested
 - Complex interoperability of services, value added effects, transition towards CAVs
 - Changing mobility habits, attitudes, values of times,...
- Are our transport models ready?
 - Will our supply models be the same?
 - Will our demand models be accurate enough?

Modelling Daily Demand Flows

And some ingredients for reliable estimation

Distinguishing regular daily demand patterns

True Demand = regular pattern + structural deviations + random fluctuations

The complexity of daily mobility patterns

The complexity of daily mobility patterns in Luxembourg

The traditional transport modelling approach

UNIVERSITÉ DU LUXEMBOURG

- The 'traditional' 4-stage model
 - Socio-demographic data
 - Travel surveys
 - Trip-based, busiest peak hour
 - Generally not suited for dynamic demand modeling
- Activity-based models
 - Schedule-based
 - Able to capture complex daily activity chains
 - Hard to calibrate and to get suitable data
 - Difficult to get consistent aggregated demand flows
 - Currently not much used for estimating daily flows

The current state of the practice for calibrating transportation models

Traffic models, data collection and estimation methods

Infrastructure Planning

- Travel demand forecasting (static, quasi-static)
 - 4-step models, activity-based models
 - OD matrix correction / adjustments from traffic data

Dynamic Traffic Management

- Dynamic demand estimation (dynamic, offline)
 - Quasi-dynamic / sequential / simultaneous
 - Simulation DTA-based

Real-time information & management

- Dynamic state flow estimation (dynamic, online)
 - Data-driven
 - Model-driven

General bi-level dynamic demand estimation problem framework

Goal: find most likely demand and supply characteristics that reproduce the data

- Some (well-known) issues
 - Complex dynamics caused by travel behavior
 - Traffic models (DNL/DTA) course representation of real traffic propagation
 - Highly combinatorial & non-linear problem

The under-determinedness problem

Non-unique link-path-OD relations

O/D	3	4	O/D	3	4
1	0	100	1	50	50
2	100	100	2	50	150

A simple example: Antwerp network

- Few route choice options
- Only traffic counts used for calibration
- Wrong structure of the demand matrix
- Spoiler: Better data and better models will solve the issue

Measured speeds

Some ingredients for reliable dynamic traffic estimation

1. Demand information

- 1. Demand data
- 2. Demand models

2. Data quality

- 1. Sensor locations
- 2. Different data types

3. Dynamic traffic flow models

- 1. Simulation of traffic flow propagation
- 2. Reproduction of congestion dynamics

4. Travel behavior models

- 1. Travel choice models
- 2. Traffic assignment and equilibrium

5. Optimisation algorithms

- 1. Structure of the estimator
- 2. Gradient vs. gradient-free methods

Reduce solution search space and information reliability

Reduce the mismatch between model and reality

Helps for orientating in the solution space in the right direction

Current research directions at UL using Big Data

MAMBA

MULTIMODAL MOBILIT

- Big Data-based applications
 - Mobility analysis
 - Demand estimation
 - Multimodal modelling
 - Personal Travel planners
- Real data available of Luxembourg
 - Mobile phone data (Post)
 - Smartphones (& smartwatches) (go2uni platform)
 - Other 'more traditional' (OpenData Portail)

http://otp.mamba-project.lu/

Using mobile phone data for daily demand production and spatial-temporal distribution

Using mobile phone data for network state estimation: Macroscopic Fundamental Diagram

Acknowledgments: Raphael Frank & Thierry Derrmann (SnT)

Using smartphone (and smartwatch) data for modelling individual daily mobility patterns

Acknowledgments: Bogdan Toader, Sebastien Faye (UL)

Location identification and classification

Using smartphone data for predicting and correlating daily demand patterns

Acknowledgments: Bogdan Toader (UL)

Generating purpose-specific demand information from individual mobility data

Acknowledgments: Ariane Scheffer (UL)

Including activity scheduling in daily demand estimation (1)

time

Including activity scheduling in daily demand estimation (2)

Application on a real sized network: Luxembourg

Post Data provided by POST Luxembourg

Benchmarking scenario: Demand in/out of Lux City

Results of daily demand flows on some OD pair

Utility-based formulation

including mobile phone data for demand flow production

Future perspectives

- The future is uncertain, but...
- The future is bright: A lot still has to be done!!!
- A unified model-data-driven modelling approach needed
 - Travel demand models with dynamic flow estimation models
 - Behavioural and data science approaches
 - Interdisciplinary effort
 - Engineering
 - Computer Science
 - Social sciences
 - Transport Economy

• ...

Outlook and closing remarks

- New Big Data gives opportunities for improving our demand models
 - Understanding mobility needs
 - Forecast future activity-travel patterns
 - Enable users with enhanced information
- Examples of transport applications
 - Dynamic traffic modelling
 - Multimodal travel planning
 - Decision support services
 - Transport systems optimisation
- New challenges needed to model the demand and supply of the future

References

Frederix R, Viti F, Tampere C.M.J. (2011). New gradient approximation method for dynamic origin-destination matrix estimation on congested networks. Transp Res Record 2263, 19-25.

Frederix, R., Viti, F., Tampère, C.M.J. (2013). Dynamic origin-destination estimation in congested networks: Theoretical findings and implications in practice. *Transportmetrica A: Transport Science*, **9**(6), 494-516.

Frederix R, Viti F, Tampere C.M.J. (2013). Dynamic origin-destination matrix estimation on large-scale congested networks using a hierarchical decomposition scheme. *Journal of ITS* **18**, 51-66.

G. Cantelmo, F. Viti, C. M. J. Tampère, E. Cipriani, and M. Nigro (2014), A two-steps approach for the correction of the seed matrix in the dynamic demand estimation problem," *Transp.* Res. Rec. 2014.

Di Donna S., Cantelmo G., Viti F. (2015). A Markov chain dynamic model for trip generation and distribution based on CDR. Proceedings of the MT-ITS2015, Budapest, Hungary.

Cantelmo G., F. Viti, E. Cipriani, Nigro M. (2015), "A Two-Steps Dynamic Demand Estimation Approach Sequentially Adjusting Generations and Distributions," in ITSC 2015-IEEE explore.

T. Derrmann, R. Frank, F. Viti, T. Engel. Towards Estimating Urban Macroscopic Fundamental Diagrams from Mobile Phone Signaling Data: A Simulation Study. Transportation Research Board Annual Meeting, Washington DC.

Cantelmo G., F. Viti, T. Derrmann, "Effectiveness of the Two-Step Dynamic Demand Estimation model on large networks", Proceedings of the 5th MT-ITS2017 Conference, Naples.

Cantelmo G., F. Viti, E. Cipriani, and M. Nigro, "A Utility-based Dynamic Demand Estimation Model that Explicitly Accounts for Activity Scheduling and Duration.," *ISTTT2017 (Transp. Res. Series., Jun. 2017)*. To appear in *Transpn Res. Part A: Policy and Practice (in press)*

Toader, B., Sprumont, F., Faye, S., Popescu, M., Viti, F. (2017). Usage of smartphone data to derive an indicator for collaborative mobility between individuals. ISPRS International Journal of Geo-Information, 6, 62-71.

A. Scheffer, G. Cantelmo, F. Viti, (2017). Generating Macroscopic, Purpose-dependent Trips Through Monte Carlo Sampling Techniques. Transportation Research Proceedings of the EWGT Conference, Budapest.

www.mobilab.lu francesco.viti@uni.lu

THANK YOU FOR YOUR ATTENTION !

